Synergistic Passivation and Down‐Conversion by Imidazole‐Modified Graphene Quantum Dots for High Performance and UV‐Resistant Perovskite Solar Cells

Author:

Cai Qianqian1,Sheng Wangping1,Yang Jia1,Zhong Yang1,Xiao Shuqin1,He Jiacheng1,Tan Licheng12,Chen Yiwang1234ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China

2. Peking University Yangtze Delta Institute of Optoelectronics 60 Chongzhou Avenue Nantong 226010 China

3. National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China

4. College of Chemistry and Chemical Engineering Gannan Normal University Ganzhou 341000 China

Abstract

AbstractOrganic–inorganic hybrid perovskite solar cells (PVSCs) have achieved stunning progress during the past decade, which has inspired great potential for future commercialization. However, tin dioxide (SnO2) as a commonly used electron transport layer with varied defects and energy level mismatch with perovskite contributes to the energy loss and limitation of charge extraction. Herein, imidazole‐modified graphene quantum dots (IGQDs) are introduced as the interlayer, which plays a significant role in three aspects: 1) dually passivating the defects of SnO2 and buried interface of perovskite by first‐principles calculations; 2) accelerating the carrier extraction and transfer owing to ideal band alignment; and 3) improving light utilization through down‐conversion proved by light intensity measurement. Consequently, the devices based on IGQDs/SnO2 not only exhibit the champion power conversion efficiency (PCE) of 24.11%, but display a significantly enhanced ultraviolet (UV) stability retaining about 81% of their initial PCEs after continuous UV irradiation (365 nm, 20 mW cm−2) for 300 h. Moreover, the unencapsulated modified device remains 82% after storing for 1650 h in air (20–30 °C, RH 45–55%). This work furnishes a novel method for the combination of interfacial passivation and photon management, which holds out for the prospect of employment in other optoelectronic applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3