Organic Molecule and Inorganic Salt Synergistic‐Modified SnO2 for Efficient Perovskite Solar Cells

Author:

Li Guoming12,Ma Zhu12ORCID,Yu Tangjie1,Xuan Ningqiang3,Huang Zhangfeng1,Li Yanlin1,Hou Shanyue1,Liu Qianyu1,You Wei1,Chen Yi1,Du Zhuowei1,Yang Junbo1,Yang Qiang1,Tan Li1,Huang Cheng1,Xiang Yan1ORCID,Mai Yaohua4ORCID,Yu Jian1,Long Wei5

Affiliation:

1. School of New Energy and Materials Southwest Petroleum University Chengdu 610500 P. R. China

2. Institute of Photovoltaic Southwest Petroleum University Chengdu 610500 P. R. China

3. Seventh Oil Production Plant Changqing Oilfield Company No.151 Weiyang Road, Weiyang District Xi'an City Shaanxi Province 710000 P. R. China

4. Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 P. R. China

5. Department of Photovoltaic Technology Tongwei Solar Co., Ltd Chengdu 610200 P. R. China

Abstract

Element doping and interface modification strategy are effective methods to regulate the electrical properties of SnO2 electron transport material, SnO2/perovskite (PVK) interface, and PVK crystal growth. Herein, rubidium fluoride (RbF) is introduced into SnO2 colloidal dispersion, and then an ultra‐thin layer of 4‐carboxy‐3‐fluorobenzoboric acid (FBCA) is applied to the SnO2 layer surface. This synergistic modification strategy can improve the electrical conductivity of the electron transport layer, increase the chemical connection of the buried interface, improve the crystallization and grain growth of PVK, and thus promote the performance and stability of devices. The results show that the PVK solar cells (PSCs) with the synergistic‐modified SnO2 electron transport material (M‐SnO2) obtain an optimum power conversion efficiency of 21.92% and the unencapsulated PSCs sustain 91% and 87% of the original value, which stored in a nitrogen atmosphere and ambient atmosphere (25 ± 5 °C, 30–50% relative humidity) more than 1000 h, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3