Alumina Nanoparticle Interfacial Buffer Layer for Low‐Bandgap Lead‐Tin Perovskite Solar Cells

Author:

Jin Heon1ORCID,Farrar Michael D.1,Ball James M.1,Dasgupta Akash1ORCID,Caprioglio Pietro1ORCID,Narayanan Sudarshan23ORCID,Oliver Robert D. J.14ORCID,Rombach Florine M.1ORCID,Putland Benjamin W. J.1,Johnston Michael B.1ORCID,Snaith Henry J.1ORCID

Affiliation:

1. Department of Physics University of Oxford, Clarendon Laboratory Oxford OX1 3PU UK

2. Department of Materials University of Oxford Oxford OX1 3PH UK

3. The Faraday Institution Quad One Harwell Science and Innovation Campus Didcot OX11 0RA UK

4. Department of Physics and Astronomy University of Sheffield Hicks Building, Hounsfield Road Sheffield S3 7RH UK

Abstract

AbstractMixed lead‐tin (Pb:Sn) halide perovskites are promising absorbers with narrow‐bandgaps (1.25–1.4 eV) suitable for high‐efficiency all‐perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat‐Pb counterparts. This is partly due to the rapid crystallization of Sn‐based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution‐based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non‐continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron‐transport layer, which is only tens of nanometres in thickness is improved. The overall maximum‐power‐point‐tracked efficiency improves by 65% and the steady‐state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six‐fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3