Machine Learning‐Directed Fast and High‐Throughput Acquisition of High‐Efficiency Microwave Absorbents From Infinite Design Space

Author:

Che Renchao12ORCID,Wu Zhengchen2,Quan Bin3,Zhang Ruixuan1,Zhang Huiran4,Zhang Jincang1,Lu Wencong5

Affiliation:

1. Zhejiang Laboratory Hangzhou 311100 P. R. China

2. Laboratory of Advanced Materials Shanghai Key Lab of Molecular Catalysis and Innovative Materials Academy for Engineering & Technology Fudan University Shanghai 200438 P. R. China

3. Institute of Advanced Materials and Flexible Electronics, School of Chemistry andMaterials Science Nanjing University of Information Science & Technology Nanjing 210000 P. R. China

4. School of Computer Engineering and Science Shanghai University 200438 Shanghai P. R. China

5. College of Sciences Shanghai University Shanghai 200438 P. R. China

Abstract

AbstractIntrinsic composition properties and extrinsic micro‐/nano‐structural effects constitute the infinite design space of microwave absorption (MA) materials wherein the high‐efficiency performance is expected to advance stealth and anti‐interference technologies. However, restricted to the black box of physical mechanisms, discovering those materials too often relies on the traditional trial‐and‐error methods, falling into the time‐consuming loop between material modification and performance measurement. Herein, an unprecedented machine learning‐based forecasting system (MLFS) is constructed to directly predict the process conditions of carbonyl iron/ferrosoferric oxide hybrids with enhanced MA performance. The high‐throughput screening and inverse projection based on pattern recognition recommend a series of excellent MA materials with the highest performance correlation coefficient up to 0.9844. After manual selection from this set, the enhancement of maximum absorption efficiency and bandwidth of the optimal hybrid reach 207% and 360% in comparison with the original database. The standardized MLFS procedure immensely shortens the research cycle to a few weeks compared to several months of the manual orthogonal experiment. This is believed to be an expressway for accelerating the discovery of high‐performance MA materials and their industrialization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3