Phase transition enhanced electromagnetic wave absorption in Cs(Pb,Fe,Co,Ni,Mn)Br3‐based high‐entropy compounds

Author:

Chen Qiuling12ORCID,Chen Lele1,Wu Xiangyu1

Affiliation:

1. School of Material Sciences and Engineering Henan University of Technology Zhengzhou China

2. Henan International Joint Laboratory of Nano‐Photoelectric Magnetic Material of Henan University of Technology Zhengzhou China

Abstract

AbstractTo address challenges such as signal interference and crosstalk, the development of novel materials with the ability of electromagnetic absorption (EMA) is imperative. In this study, the composition of the B‐site of CsPbBr3 was fixed for all samples Pb0.2Fe0.2Co0.2Ni0.2Mn0.2 with varying A/B ratios of 1:1, 1:2, and 1:3. We achieved good EMA properties for the Cs1(Pb0.2Fe0.2Co0.2Ni0.2Mn0.2)3O3, including a minimum reflection loss of 75 dB at 10.2 GHz and a 2.5 mm thickness, accompanied by an exceptionally wide effective bandwidth of 8.8 GHz. X‐ray diffraction, transmittance electron microscopy, and X‐ray photoelectron spectroscopy, etc. were used to characterize the structure, morphology, and EMA‐associated properties of CsMBr3. The presence of high entropy was validated through meticulous analysis using Rietveld and grazing‐incidence wide‐angle scattering patterns. The magnetic permeability, dielectric constant, polarization, and attenuation loss were improved with a high‐entropy ratio of 3 within the 30–50 nm crystals. Notable lattice distortion within PbBr6 and phase transition within high‐entropy alloying are the driving forces behind these enhanced EMA characteristics.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3