Affiliation:
1. State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering Zhejiang University Hangzhou 310058 China
2. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan 030000 China
3. Center of Electron Microscopy Zhejiang University Hangzhou 310027 China
Abstract
AbstractGeTe is a very promising thermoelectric material, but the presence of massive intrinsic Ge vacancies leads to an overhigh hole concentration and poor thermal stability. Counter doping is commonly employed to reduce the hole concentration, which, however, unavoidably deteriorates the carrier mobility. Here, it is found that the intrinsic hole concentration in the rhombohedral phase is much lower than that in the cubic phase, owing to the higher formation energy of Ge vacancy in the former. With this recognition, the hole concentration of GeTe can be tuned to its optimum value simply by annealing below the phase transition temperature. As a result, “compositional plainification” is realized in the high‐performance GeTe‐based thermoelectrics with significantly reduced amounts of counter dopants and hetero‐alloys. A high carrier mobility of 150 cm2 V−1 s−1 is realized in GeTe at 300 K, which is much higher than that in conventional counter‐doped ones (≤60 cm2 V−1 s−1). More importantly, GeTe‐based compounds, with suppressed intrinsic vacancies, exhibit good thermal stability and reproducibility of thermoelectric performance. A high peak figure of merit, zT, of 2.14 at 670 K is obtained in Ge0.93Bi0.03Pb0.04Te. This work highlights the importance of understanding and regulating the intrinsic vacancy for high‐performance GeTe thermoelectrics.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献