Affiliation:
1. School of Materials Science and Engineering Tianjin University Tianjin 300350 China
2. Binhai Industrial Research Institute Tianjin University Tianjin 300452 China
Abstract
AbstractPassive radiative cooling materials can efficiently reflect solar radiation and spontaneously dissipate heat through the long‐wave infrared (LWIR) transmission window to the coldouter space. They are highly attractive for application in walls and roofs of sustainable energy‐efficient buildings, but it is a challenging task to develop switchable radiative coolers for transparent windows. Herein, free‐standing bacterial cellulose‐templated radiative cooling liquid crystal films with high LWIR emissivity and self‐adaptive solar transmittance are reported. Biosynthetic silanized bacterial cellulose with 3D interconnected porous nanostructure is harnessed as a robust template for confining novel liquid crystals with smectic A to chiral nematic phase transition, thereby endowing the film with high solar transmittance modulation ability. The resulting film is found to not only exhibit a remarkable LWIR emissivity, but also adaptively change its solar transmittance between a transparent state and an opaque state according to environmental temperature variation. Outdoor radiative cooling experiments are performed, and the energy‐saving performance is evaluated through a simulation of a 12‐story reference office building with the films applied as radiative cooling windows. This research can shine light on the development of advanced radiative cooling materials with switchable transmittance and their widespread applications in buildings, vehicles, and transparent photovoltaics.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Science Fund for Distinguished Young Scholars of Tianjin Municipality
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献