Overcompensation of ecosystem productivity following sustained extreme drought in a semiarid grassland

Author:

Ru Jingyi1,Wan Shiqiang1,Hui Dafeng2,Song Jian1

Affiliation:

1. School of Life Sciences, Institute of Life Science and Green Development Hebei University Baoding China

2. Department of Biological Sciences Tennessee State University Nashville Tennessee USA

Abstract

AbstractDrought events are projected to be more extreme and frequent in the future and have profound influences on the structure and functions of terrestrial ecosystems. Thus, better understanding the mechanisms of recovery is critical for predicting the future dynamics of terrestrial ecosystems. We performed a 7‐year field precipitation experiment to examine recovery of a grassland ecosystem from different magnitudes of sustained drought, from slight to extreme. The ecosystem was exposed to precipitation treatments in the first 3 years (2010–2012) and recovered during the last 4 years (2013–2016) without precipitation treatments. Overall, large reductions of aboveground net primary productivity (ANPP, −43.3%) and perennial forb biomass (−83.1%) were observed in the third year (2012) of extreme drought only. Nevertheless, ANPP fully recovered within 1 year after the drought treatments were terminated, and the rapid recovery was mainly due to increased soil total nitrogen and root biomass allocation after drought. Surprisingly, large increases of ANPP under the extreme drought treatment occurred during the recovery periods from 2013 to 2015 (+74.1, +88.5, and +119.8 g m−2 year−1) compared to the control. The overcompensation offset the extreme drought‐induced reduction of ANPP in the treatment years and was primarily ascribed to the enhanced biomass of perennial grasses (PG). Higher resistance to drought and fast resource acquisition strategy might drive the rapid recovery and expansion of PG. Our findings revealed the rapid recovery of grasslands and the critical role of community overcompensation in maintaining grassland ecosystem function and stability under future climate change scenarios.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3