Affiliation:
1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
2. College of Resources and Environment University of Chinese Academy of Sciences Beijing China
3. Natural Resources Comprehensive Survey Command Center China Geological Survey Beijing China
4. Research Center for Ecology and Environment of Central Asia Chinese Academy of Sciences Urumqi China
Abstract
AbstractThe broad leaf, deciduous black locust (Robinia pseudoacacia) and needle leaf, evergreen Chinese pine (Pinus tabulaeformis) are the major afforestation species on the Loess Plateau of China, accounting for 29.5% and 15.9% of the afforestation area, respectively. The decay of black locust and drying of the forest land soil in this region have caused serious concerns among scientific community and local management authorities. Understanding the hydrological characteristics of the afforestation plantation may provide clues for choosing proper species. However, previous studies demonstrated diverse or even contradictory understandings due to incomplete observations of the water balance. We used a model to reconstruct the water balance based on 5 years (2015–2019) of incomplete soil water and transpiration observations at the field for these two species. The R‐squares of linear regression analysis of simulated and observed soil water in black locust and Chinese pine plantations were 0.69 and 0.90, respectively; and transpiration was 0.62 and 0.69, respectively. Based on the reconstructed water balance components, we found that (1) black locust and Chinese pine had similar annual evapotranspiration in quantity. However, the Chinese pine transpired less and evaporated more water from the canopy than the black locust, with their ratios to the annual precipitation 50.7% and 69.7%, 26.3% and 17.2%, respectively; (2) the Chinese pine has higher evapotranspiration than the black locust in the non‐growing season, accounting for 19.5% and 9.2% of the annual evapotranspiration, respectively; and (3) the Chinese pine is more tolerable to soil water drought than black locust. The findings may suggest that the Chinese pine is a more favourable species for afforestation than the black locust from the point view of drought resistance in this region.
Funder
National Key Research and Development Program of China
Subject
Earth-Surface Processes,Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献