Coal gangue detection and recognition method based on multiscale fusion lightweight network SMS‐YOLOv3

Author:

Li Deyong1234,Ren Huaiwei34ORCID,Wang Guofa1234ORCID,Wang Shuang12,Wang Wenshan12,Du Ming34

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines Anhui University of Science and Technology Huainan China

2. Collaborative Innovation Center for Mine Intelligent Technology and Equipment Anhui University of Science and Technology Huainan China

3. China Coal Technology Engineering Group Coal Mining Research Institute Beijing China

4. China Coal Technology Engineering Group China Coal Research Institute Beijing China

Abstract

AbstractAiming at the problems of large memory footprint, low detection speed, and low detection accuracy for small and overlapping targets existing in the current coal gangue target detection algorithm, a real‐time detection method for coal gangue based on a multiscale fusion lightweight network (SMS‐YOLOv3) is proposed. Taking MobileNetv3 as a feature extraction network, in which all SE modules are replaced with SKNet, thus improving the ability of image feature extraction and making more effective use of parameters. A shallow detection scale is added to form a detection structure with the fusion of four scales to improve the detection accuracy of small targets. The spatial pyramid pooling is added after the backbone network to convert different feature maps into fixed feature maps, to improve the detection accuracy of the algorithm. CIoU bounding box regression loss and the K‐means++ clustering anchorbox are used to improve the detection accuracy of targets. Experimental equipment was built, and coal gangue datasets of small size, large size, dim light, mutual concealment, and a large number of coal gangue under multiple conditions were constructed. Experiment results demonstrate the effective and fast detection of the proposed algorithm for small targets and overlapping targets of coal gangue accurately, with mAP reaching 98.97%. The algorithm has an mAP improvement of 0.37% and an fps increase of 119.04% compared with the original YOLOv3, with memory only 1/24 of the original.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3