Correlations among morphological and biochemical traits in high‐cannabidiol hemp (Cannabis sativa L.)

Author:

Stack George M.1ORCID,Carlson Craig H.12ORCID,Toth Jacob A.1ORCID,Philippe Glenn3ORCID,Crawford Jamie L.4,Hansen Julie L.4ORCID,Viands Donald R.4ORCID,Rose Jocelyn K. C.3ORCID,Smart Lawrence B.1ORCID

Affiliation:

1. Horticulture Section, School of Integrative Plant Science Cornell University, Cornell AgriTech Geneva New York USA

2. Cereal Crops Research Unit, Edward T. Schafer Agricultural Research, Center USDA‐ARS Fargo North Dakota USA

3. Plant Biology Section, School of Integrative Plant Science Cornell University Ithaca New York USA

4. Plant Breeding and Genetics Section, School of Integrative Plant Science Cornell University Ithaca New York USA

Abstract

AbstractCannabis sativa is cultivated for multiple uses including the production of cannabinoids. In developing improved production systems for high‐cannabinoid cultivars, scientists and cultivators must consider the optimization of complex and interacting sets of morphological, phenological, and biochemical traits, which have historically been shaped by natural and anthropogenic selection. Determining factors that modulate cannabinoid variation within and among genotypes is fundamental to developing efficient production systems and understanding the ecological significance of cannabinoids. Thirty‐two high‐cannabinoid hemp cultivars were characterized for traits including flowering date and shoot‐tip cannabinoid concentration. Additionally, a set of plant architecture traits, as well as wet, dry, and stripped inflorescence biomass were measured at harvest. One plant per plot was partitioned post‐harvest to quantify intra‐plant variation in inflorescence biomass production and cannabinoid concentration. Some cultivars showed intra‐plant variation in cannabinoid concentration, while many had a consistent concentration regardless of canopy position. There was both intra‐ and inter‐cultivar variation in architecture that correlated with intra‐plant distribution of inflorescence biomass, and concentration of cannabinoids sampled from various positions within a plant. These relationships among morphological and biochemical traits will inform future decisions by cultivators, regulators, and plant breeders.

Funder

Empire State Development Corporation

Agricultural Research Service

Publisher

Wiley

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3