Optimizing Plant Density and Production Systems to Maximize Yield of Greenhouse-grown ‘Trust’ Tomatoes

Author:

Amundson Susannah1,Deyton Dennis E.1,Kopsell Dean A.1,Hitch Walt2,Moore Ann2,Sams Carl E.1

Affiliation:

1. 1Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996

2. 2Plateau Research and Education Center, University of Tennessee, 320 Experiment Station Road, Crossville, TN 38571

Abstract

Plant spacing and production systems are important factors for maximizing production of greenhouse-grown tomatoes (Solanum lycopersicum). Two studies were conducted simultaneously and independently, each in a 33 × 96-ft greenhouse in Fall 2008 and Spring 2009 using perlite soilless bag culture. The purpose of the first study was to evaluate yield and fruit weight of ‘Trust’ tomatoes spaced 12, 16, 20, 24, or 28 inches in-row. The second study was conducted to determine the effect of pruning production systems on yield and fruit weight. The first system is pruning two plants per bag each to a single leader and the second is pruning one plant per bag to double leader. A plant spacing of 28 inches resulted in significantly more fruit per plant than the 12-inch plant spacing. However, yield per area decreased with wider plant spacings. Plants spaced 12 inches apart in-row produced 2.8 and 3.8 lb/ft2 total yield in the fall and spring, respectively, compared with plants spaced 28 inches apart that produced 1.7 and 2.2 lb/ft2 in the fall and spring. Using a production system with one plant per bag pruned to a double leader increased yield by 6.4 lb/plant in the fall and 15.7 lb/plant in the spring. On a per bag basis, pruning two tomato plants to one leader increased total yield by 2.6 lb/bag and was more economical in the fall; whereas, in the spring, the double leader production system did not affect yield but was more economical.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3