Affiliation:
1. Department of Chemical and Biomolecular Engineering University of California Irvine California USA
2. Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware USA
Abstract
AbstractThe efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second‐generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G‐protein‐coupled receptor (GPCR)‐based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose‐dependent signal amplification. We focused on the glucose‐responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3, increasing extracellular enzyme activity by 81%. We then demonstrated glucose‐mediated expression and cell‐surface display of the β‐glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re‐directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock‐out of PAH1. This resulted in an up to 4.2‐fold improvement with respect to the baseline strain. Finally, we observed cellobiose‐dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1‐fold when cellobiose was added.
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献