Author:
Guerfal Mouna,Claes Katrien,Knittelfelder Oskar,De Rycke Riet,Kohlwein Sepp D,Callewaert Nico
Abstract
Abstract
Background
Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved.
Results
We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER.
Conclusions
We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of biotechnological interest, such as insect cells and mammalian cells.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference29 articles.
1. Zoonens M, Miroux B: Expression of membrane proteins at the Escherichia coli membrane for structural studies. Methods Mol Biol. 2010, 601: 49-66. 10.1007/978-1-60761-344-2_4.
2. Rajakumari S, Grillitsch K, Daum G: Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res. 2008, 47 (3): 157-171. 10.1016/j.plipres.2008.01.001.
3. Pascual F, Carman GM: Phosphatidate phosphatase, a key regulator of lipid homeostasis. Biochim Biophys Acta. 2013, 1831 (3): 514-522. 10.1016/j.bbalip.2012.08.006.
4. Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S: The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 2005, 24: 1931-1941. 10.1038/sj.emboj.7600672.
5. Nicaud JM, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C: Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res. 2002, 2 (3): 371-379.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献