Supercritical carbon dioxide technology in synthesis, modification, and recycling of battery materials

Author:

Han Yiyao1,Zhou Xiaozheng1,Fang Ruyi1,Lu Chengwei1,Wang Kun1,Gan Yongping1,He Xinping1,Zhang Jun1,Huang Hui1,Zhang Wenkui1,Xia Xinhui1,Xia Yang1

Affiliation:

1. College of Materials Science and Engineering Zhejiang University of Technology Hangzhou China

Abstract

AbstractFor pursuing the ambitious goals in the burgeoning electric vehicles, portable electronic devices, and energy storage sectors, Li‐ion batteries (LIBs) are considered as one of the most promising electrochemical power sources because of their high energy density and moderate cost. Particularly, the improvement of battery materials and recycling of spent LIBs are receiving great attention since the sustainable approaches for the synthesis, modification, and recycling of battery materials are the crucial factors to the successful large‐scale implementation of LIBs. In this regard, supercritical carbon dioxide (SC‐CO2), which possesses many merits, such as environmentally friendly, low‐cost, individual chemical environment, and especially its unique physical properties, has been employed as solvent and reaction medium in the synthesis and modification of diverse functional materials. In this review, we mainly aim at compiling the applications of SC‐CO2 technology in the synthesis and modification of electrode materials as well as the recycling of LIBs. First, the unique properties and principles of SC‐CO2 technology are highlighted. Second, the latest progresses of the electrode materials design and recycling with the assistance of SC‐CO2 technique are summarized. Finally, the challenges, future directions, and perspectives on the design and development of battery materials and battery recycling by SC‐CO2 technology are proposed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3