Instrumented Dynamic Penetration of Sandwich Panels with Auxetic and Non‐Auxetic Core using Direct Impact Hopkinson Bar

Author:

Šleichrt Jan1ORCID,Falta Jan1ORCID,Neuhäuserová Michaela1ORCID,Drechslerová Veronika1ORCID,Koudelka Petr1ORCID,Rada Václav1ORCID,Fíla Tomáš1ORCID,Jiroušek Ondřej1ORCID

Affiliation:

1. Faculty of Transportation Sciences Czech Technical University in Prague Konviktská 20 110 00 Prague Czech Republic

Abstract

This article deals with the dynamic penetration of 3D‐printed panels with auxetic and conventional honeycomb unit cell‐based cores. The geometry of the unit cells and their periodic assembly in the resulting lattices are selected to ensure the same relative density and overall weight of the individual sample types. Such a similarity of both specimen types allows for the evaluation of differences between conventional and auxetic lattices in terms of penetration characteristics and deformation energy mitigation properties. Dynamic penetration of the samples is performed using a fully strain‐gauge instrumented open Hopkinson pressure bar at three impact velocities resulting in three loading scenarios. All the performed experiments are captured by two optical cameras for detailed observation and to track the impactor movement using digital image correlation. The force‐penetration depth relation is used to evaluate the elastic and postyield compression characteristics of the lattices together with their deformation energy mitigation capabilities. The results show that the main differences in the deformation response of the lattices consist of lower overall stiffness and effective yielding of the auxetic lattices at a higher penetration depth. Numerical simulation using an explicit solver is performed to analyze the deformation mechanism of the individual core types.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3