Cellular Auxetic Structures for Mechanical Metamaterials: A Review

Author:

Kelkar Parth Uday,Kim Hyun Soo,Cho Kyung-Hoon,Kwak Joon Young,Kang Chong-Yun,Song Hyun-CheolORCID

Abstract

Recent advances in lithography technology and the spread of 3D printers allow us a facile fabrication of special materials with complicated microstructures. The materials are called “designed materials” or “architectured materials” and provide new opportunities for material development. These materials, which owing to their rationally designed architectures exhibit unusual properties at the micro- and nano-scales, are being widely exploited in the development of modern materials with customized and improved performance. Meta-materials are found to possess superior and unusual properties as regards static modulus (axial stress divided by axial strain), density, energy absorption, smart functionality, and negative Poisson’s ratio (NPR). However, in spite of recent developments, it has only been feasible to fabricate a few such meta-materials and to implement them in practical applications. Against such a backdrop, a broad review of the wide range of cellular auxetic structures for mechanical metamaterials available at our disposal and their potential application areas is important. Classified according to their geometrical configuration, this paper provides a review of cellular auxetic structures. The structures are presented with a view to tap into their potential abilities and leverage multidimensional fabrication advances to facilitate their application in industry. In this review, there is a special emphasis on state-of-the-art applications of these structures in important domains such as sensors and actuators, the medical industry, and defense while touching upon ways to accelerate the material development process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3