High Hardness and High Toughness WC–Fe–Ni‐Cemented Carbides Prepared by Hot Oscillating Pressing

Author:

Gao Yang1ORCID,Deng Sheng-Qiang1,Yang Fang1,Sun De-Jian1,Gao Ka2,An Li-Nan3

Affiliation:

1. School of Materials Science and Engineering Zhengzhou University of Aeronautics Zhengzhou 450046 China

2. Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093 China

3. School of Mechanical Engineering Dongguan University of Technology Dongguan Guangdong 523808 China

Abstract

WC–Fe–Ni‐cemented carbides are prepared by hot oscillating pressing (HOP) and hot pressing (HP). Compared with the sample prepared by applying HP, the sample prepared by HOP shows higher density, lower carbide contiguity, more uniform distribution of binder phase, and finer WC grains. The average grain size of the HOP sample is 0.54 μm, where that of the HP sample is 0.67 μm. Moreover, the content of W in the binder phase is higher in the HOP sample than in the HP sample. The HOP sample exhibits a hardness of 2080 MPa and a fracture toughness of 15.95 MPa.m1/2, which are not only higher than those of the HP sample, but also higher than those of the WC–10Co alloys reported previously. The improvement in the mechanical properties is likely due to that the oscillatory pressure enhanced the flow of the liquid binder phase as well as influenced dissolution and re‐precipitation during densification process. Herein, it is indicated that HOP is an effective technique for the preparation of cemented carbides having high hardness and high toughness.

Funder

Natural Science Foundation of Henan Province

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3