Affiliation:
1. School of Engineering and Technology China University of Geosciences (Beijing) Beijing 100083 China
2. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) Beijing 100083 China
3. Zhengzhou Institute China University of Geosciences (Beijing) Zhengzhou 451283 China
Abstract
Achieving high thermal conductivity and exceptional interfacial adhesion simultaneously in thermosensitive tactile recognition sensors poses a significant challenge. A copolymer, poly([[(butylamino)carbonyl]oxy]ethyl‐ester)‐co‐polydimethylsiloxane (referred to as PP), is synthesized and subsequently complexed with alumina particles coated with liquid metal (LMAl2O3) to prepare a composite material called PP/LMAl2O3 with high thermal conductivity and strong interfacial adhesion to address this challenge. The best thermal conductivity (4.43 W m−1 K−1), electrical insulation (10−6–10−7 S m−1), and adhesion properties derived from hydrogen bonding (1316 N m−2) are obtained by adjusting the volume fraction of PP and LMAl2O3 in PP/LMAl2O3. PP/LMAl2O3 with high thermal conductivity and high interface adhesion can efficiently transfer heat between thermal flux sensors and the objects being sensed, reliably detecting small thermal flux variations and ensuring accurate thermal flux measurements. In this study, PP/LMAl2O3 is used to make up thermosensitive tactile sensor. Surprisingly, PP/LMAl2O3 demonstrates high thermal signal sensitivity for tactile recognition applications, allowing the smart thermosensitive tactile sensor system to distinguish unknown rock materials even in the dark. Overall, PP/LMAl2O3 may function as a fundamental material in thermosensitive tactile sensors for lithology identification.
Funder
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献