A Coarse-to-Fine Approach for Intelligent Logging Lithology Identification with Extremely Randomized Trees

Author:

Xie Yunxin,Zhu ChenyangORCID,Hu Runshan,Zhu Zhengwei

Abstract

AbstractLithology identification is vital for reservoir exploration and petroleum engineering. Recently, there has been growing interest in using an intelligent logging approach for lithology classification. Machine learning has emerged as a powerful tool in inferring lithology types with the logging curves. However, well logs are susceptible to logging parameter manual entry, borehole conditions and tool calibrations. Most studies in the field of lithology classification with machine learning approaches have focused only on improving the prediction accuracy of classifiers. Also, a model trained in one location is not reusable in a new location due to different data distributions. In this paper, a unified framework is provided for training a multi-class lithology classification model for a data set with outlier data. In this paper, a coarse-to-fine framework that combines outlier detection, multi-class classification with an extremely randomized tree-based classifier is proposed to solve these issues. An unsupervised learning approach is used to detect the outliers in the data set. Then a coarse-to-fine inference procedure is used to infer the lithology class with an extremely randomized tree classifier. Two real-world data sets of well-logging are used to demonstrate the effectiveness of the proposed framework. Comparisons are conducted with some baseline machine learning classifiers, namely random forest, gradient tree boosting, and xgboosting. Results show that the proposed framework has higher prediction accuracy in sandstones compared with other approaches.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3