Synthesis and Characterization of BaZrS3 Thin Films via Stacked Layer Methodology: A Comparative Study of BaZrS3 on Zirconium Foil and Silicon Carbide Substrates

Author:

Jamshaid Sumbal1ORCID,Cicconi Maria Rita2,Heiss Wolfgang3,Webber Kyle G.2,Wellmann Peter J.1ORCID

Affiliation:

1. Crystal Growth Lab Department of Materials Science and Engineering 6 Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen 91058 Germany

2. Department of Materials Science and Engineering 3 Friedrich‐Alexander University Erlangen‐Nürnberg Martensstr. 5 Erlangen 91058 Germany

3. Department of Material Science and Engineering Institute of Materials for Electronics and Energy Technology (I‐MEET) Friedrich‐Alexander‐University Erlangen‐Nürnberg Energy Campus Nürnberg Erlangen 91058 Germany

Abstract

Chalcogenide perovskites are an emerging class of semiconductors particularly interesting for optoelectronic applications due to their high absorption coefficients and direct bandgaps of 1.7–1.9 eV. However, few processing routes have been developed for the synthesis of BaZrS3 thin films. The advances in the fabrication of BaZrS3 thin films using zirconium foil as precursor and substrate is a new strategy, which is compared with the results of BaZrS3 thin films deposited on silicon carbide (SiC) substrate. In this study, a stacked layer methodology, inspired by the fabrication methods used for chalcopyrites and kesterites, is employed. The main objective is to facilitate the conversion of these layers into the desired perovskite structure through annealing. In methodology, we initiated the process by depositing elemental Zr by sputtering on SiC, followed by BaS on top of the Zr through electron beam evaporation and then sulphurized and annealed at high temperature (≈1000–1050 °C) to form BaZrS3 in an inductively heated physical vapour transport setup in the presence of elemental sulphur. In the parallel approach the methodology remains same, with the sole deviation of zirconium foil, which act as both the substrate and the source. The successful synthesis of BaZrS3 is confirmed by X‐Ray diffraction (XRD), scanning electron microscopy (SEM), and energy‐dispersive X‐Ray spectroscopy (EDS), while the optical band gap is analyzed by UV‐Vis. The microstructure of the BaZrS3 films shows the polycrystalline structure and surface roughness.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3