Digital Methods for the Fatigue Assessment of Engineering Steels

Author:

Fliegener Sascha1ORCID,Rosenberger Johannes1,Luke Michael1,Domínguez José Manuel2,Francisco Morgado Joana3,Kobialka Hans‐Ulrich4,Kraft Torsten1,Tlatlik Johannes1

Affiliation:

1. Department Component Safety and Lightweight Construction Fraunhofer Institute for Mechanics of Materials IWM Woehlerstr. 11 79108 Freiburg Germany

2. Department of Computer Science University of Freiburg Georges‐Köhler‐Allee 79 79110 Freiburg Germany

3. Empa – Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 9014 St. Gallen Switzerland

4. Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Schloss Birlinghoven 1 53757 Sankt Augustin Germany

Abstract

Engineering steels are used for a wide range of applications in which their fatigue behavior is a crucial design factor. The fatigue properties depend on various influencing factors such as chemical composition, heat treatment, surface properties, load parameters, microstructure, and others. During product development, various material characterization and qualification experiments are mandatory. For a faster and more cost‐efficient development, data driven methods (machine learning) promise to replace or to complement material testing by prediction of the fatigue strength. With an ontology‐based, semantically‐linked knowledge graph, representing the manufacturing history of the material, the influence of the parameters of the process chain on the resulting properties can be accounted for. Herein, it is shown how a fatigue database containing a wide range of materials is assembled from literature. After postprocessing and curation of the data, machine learning predictions of mechanical properties are discussed under multiple aspects. A domain ontology is defined, containing the relevant class definitions for the use case. After applying a data integration and mapping workflow, it is shown how the data can be systematically queried using knowledge graphs describing the manufacturing history of the materials.

Funder

Fraunhofer

BMBF

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3