Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters

Author:

Agrawal Ankit,Deshpande Parijat D,Cecen Ahmet,Basavarsu Gautham P,Choudhary Alok N,Kalidindi Surya R

Abstract

AbstractThis paper describes the use of data analytics tools for predicting the fatigue strength of steels. Several physics-based as well as data-driven approaches have been used to arrive at correlations between various properties of alloys and their compositions and manufacturing process parameters. Data-driven approaches are of significant interest to materials engineers especially in arriving at extreme value properties such as cyclic fatigue, where the current state-of-the-art physics based models have severe limitations. Unfortunately, there is limited amount of documented success in these efforts. In this paper, we explore the application of different data science techniques, including feature selection and predictive modeling, to the fatigue properties of steels, utilizing the data from the National Institute for Material Science (NIMS) public domain database, and present a systematic end-to-end framework for exploring materials informatics. Results demonstrate that several advanced data analytics techniques such as neural networks, decision trees, and multivariate polynomial regression can achieve significant improvement in the prediction accuracy over previous efforts, with R2 values over 0.97. The results have successfully demonstrated the utility of such data mining tools for ranking the composition and process parameters in the order of their potential for predicting fatigue strength of steels, and actually develop predictive models for the same.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Reference44 articles.

1. Committee on Integrated Computational Materials Engineering N. R. C.: Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security. 2008.http://www.nap.edu/openbook.php?record_id=12199

2. National Science and Technology Council: Materials genome initiative for global competitiveness. Technical report, National Science and Technology Council. 2011.http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf

3. Kalidindi SR, Niezgoda SR, Salem AA: Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM - J Minerals, Met Mater Soc 2011, 63(4):40–41.

4. Rajan K: Materials informatics. Materials Today 2005, 8(10):38–45. 10.1016/S1369-7021(05)71123-8

5. Hey T, Tansley S, Tolle K: The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, 1st edition. 2009.http://research.microsoft.com/en-us/collaboration/fourthparadigm/ ISBN: 0982544200, URL: .

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3