Affiliation:
1. Dresden Center for Intelligent Materials Technische Universität Dresden 01062 Dresden Germany
2. Institut für Festkörpermechanik Technische Universität Dresden 01062 Dresden Germany
Abstract
Thin active elements can be added to rigid surfaces for the tuning of mechanical contact properties. The deformation of the active structures leads to the forming of arches. Depending on the forming of the arch, the force–displacement curve for contact becomes more or less steep. This can be understood as changing the interaction property between soft and hard. Herein, this concept is presented with hydrogels inside the active elements. Analytical derivations and finite‐element simulation results for actuation and contact, based on the stimulus expansion model, are shown. This modeling approach appropriately captures the stimulus‐dependent swelling properties of the material and can be easily applied in commercial finite‐element tools. Special considerations are taken for the encapsulation of the active materials. A thin encapsulation foil allows 1) the use of swelling agents, such as water, without contaminating the contact objects. Furthermore, 2) appropriate water reservoirs for the swelling process can be included. The simulation results show that a surface softness tuning can be realized. The presented active material and dimensions are exemplary; the concept can be applied to other active materials for tuning surface interactions.
Subject
Condensed Matter Physics,General Materials Science
Reference94 articles.
1. Design of soft and hard active-passive composite beams
2. A.Ehrenhofer inProc. in Applied Mathematics and Mechanics Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) Wiley2022.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献