Prediction of hydrogel swelling states using machine learning methods

Author:

Wang Yawen12ORCID,Wallmersperger Thomas12ORCID,Ehrenhofer Adrian12ORCID

Affiliation:

1. Institut für Festkörpermechanik Technische Universität Dresden Dresden Germany

2. Dresden Center for Intelligent Materials Technische Universität Dresden Dresden Germany

Abstract

AbstractIn the field of material informatics, artificial neural networks (ANNs) contribute to the investigation of the processing‐structure‐properties‐performance relationship of materials. This inspires us to leverage the capabilities of ANNs to decode properties of hydrogels, thereby customizing these active materials for sensors or actuators. In the current work, we introduce an approach to predict discrete swelling states of temperature‐responsive hydrogels, especially PNIPAAm, based on their synthesis parameters, utilizing ANN models. To build the database, we analyze literature on temperature‐responsive hydrogels and compile essential synthesis parameters. The corresponding data points related to these synthesis parameters are then extracted. We propose different variants of ANN models and compare their accuracy on the acquired dataset. The selected model can predict the swelling states of hydrogel samples within the test dataset with relative prediction error of 0.11. This approach is applied to predict the expected properties. Subsequently, the hydrogels can be synthesized, and their properties can be experimentally verified. Our approach can be extended to other types of hydrogels and in the prediction of additional properties. The identified synthesis parameters serve as a valuable foundation for the expansion of the database with further literature resources. An enriched database will enhance the performance of the data‐driven model, thereby improving its predictive capabilities.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adapting sigmoid functions for hydrogel swelling curve prediction with neural networks;PAMM;2024-08-27

2. System Design and Models for Active Materials;2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP);2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3