Hybrid Hydrogel‐Magnet Actuators with pH‐Responsive Hydrogels for Gastrointestinal Microrobots

Author:

Lai Yung Priscilla1ORCID,Li Zhaoxin1,Naguib Hani1,Diller Eric123ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering University of Toronto 170 College Street Toronto M5S 3E3 Canada

2. Robotics Institute University of Toronto 55 St. George Street Toronto M5S 0C9 Canada

3. Institute of Biomedical Engineering University of Toronto 164 College Street Toronto M5S 3E2 Canada

Abstract

Limited space on millimeter‐scale devices for biomedical applications makes it challenging to incorporate bulky actuators and power for onboard mechanical actuation. Stimuli‐responsive hydrogels, such as pH‐responsive hydrogels, provide a solution to automatically sense and actuate in the gastrointestinal tract. However, hydrogels are often nonload bearing and slow in actuation. To overcome these challenges, a new type of hybrid actuator is developed which utilizes a pH‐responsive hydrogel with magnets to trigger magnetic springs (i.e., permanent magnets with repulsive, spring‐like forces) to quickly initiate rotational and translational movements at pH > 6. The agar‐poly(acrylic acid) hydrogel undergoes a large volume transition at pH > 6 and exhibits large nominal blocking stress of 610–819 kPa for a 3–4 mm diameter cylinder hydrogel. Moreover, the scaling of hydrogel force and response times are experimentally confirmed. Based on the hydrogel properties, an analytical hydrogel model is developed to predict hydrogel force and displacement under varying magnetic loads and wall constraints in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 6.8), and the experimental data validate the model. Finally, an innovative hybrid hydrogel‐magnet actuator that triggers rotational and translational motion without external activation is demonstrated.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3