Fabrication of SiC/Al Functionally Graded Materials Via Filtration Extrusion

Author:

Zhao Junfeng123ORCID,Yang Zhiyu24,Li Qiulin2,Wang Liang3

Affiliation:

1. Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices Huizhou University Huizhou 516001 China

2. Joint Laboratory of Nuclear Materials and Service Safety Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China

3. Shenzhen Zhixing New Materials Tech Co., Ltd. Shenzhen 5181507 China

4. Board Process Technology Department (2012Laboratories) Huawei Technologies Co Ltd. Shenzhen 518028 China

Abstract

Functionally graded materials (FGMs) have broad application prospects owing to their outstanding material properties. Herein, a filtration extrusion device is designed, and low‐content SiC/Al composites are used to explore the feasibility of applying filtration extrusion techniques to the fabrication of FGMs. The results suggest that the extrusion force increases monotonically with an increase in the filtration extrusion ratio. Furthermore, the filtration extrusion process can be divided into two stages based on the change trend of extrusion pressure: at stage 1, extrusion force is small and increases slowly. At stage 2, the extrusion force increases significantly and rapidly. During the filtration extrusion process, the larger the initial content, the lower the extrusion temperature, the smaller the hole‐separation mold area ratio, the faster the increase in the extrusion force, and the greater the maximum extrusion force during the extrusion process. Based on filtration extrusion experiments for various extrusion distances, it is found that the transition from the nonflow to the flow influence zone is primarily responsible for the enrichment and gradient distribution of SiC particles. The SiC particles are distributed in a gradient, and the content of SiC particles near the separation mold is higher than that on the other side.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3