Aerosol‐Jet‐Printed Encapsulation of Organic Photovoltaics

Author:

Basu Robin1,Siah Kok S.2,Distler Andreas1ORCID,Häußler Felix2,Franke Jörg2,Brabec Christoph J.13,Egelhaaf Hans-Joachim13

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Faculty of Engineering Department of Material Science Materials for Electronics and Energy Technology (i-MEET) Martensstraße 7 91058 Erlangen Germany

2. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Faculty of Engineering Department Mechanical Engineering Institute for Factory Automation and Production Systems (FAPS) Egerlandstraße 7-9 91058 Erlangen Germany

3. Forschungszentrum Jülich GmbH (FZJ) Helmholtz-Institute Erlangen-Nürnberg (HI-ERN) Immerwahrstraße 2 91058 Erlangen Germany

Abstract

Organic electronic devices (OEDs) are prone to oxygen‐ and water‐induced degradation and therefore need to be encapsulated with barrier materials. In this work, an aerosol jet (AJ)‐printing process is developed to coat perhydropolysilazane (PHPS) directly onto OEDs by adapting the print setup and systematically optimizing the process parameters. Furthermore, a novel curing process that converts PHPS to silica barrier layers is developed by combining damp heat (DH) exposure with subsequent vacuum–UV irradiation. This two‐step treatment is shown to be considerably faster and gentler than the state‐of‐the‐art curing processes and also yields a quantitatively higher conversion. Both the printing and the conversion process are fully compatible with OED devices, which is demonstrated by a damage‐free direct encapsulation of organic solar cells. The encapsulated cells show a significant reduction of degradation in DH conditions (65 °C/85% r.h.), maintaining >95% of their initial performance for >100 h. Complementary electroluminescence measurements reveal that the AJ‐printed barrier layers effectively prevent lateral water ingress into the devices. Herein, the proof of principle is provided that AJ printing can be used to print barrier layers directly onto OEDs and is thus an industrially highly relevant technology to precisely encapsulate such devices even on 3D objects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3