Brief Overview of Functionally Graded NiTi‐Based Shape Memory Alloys

Author:

Sun Fuzhen1,Feng Xinxin2,Wang Haizhen2,Cao Xinjian3,Liu Xiao3,Liu Yang1,Li Yan1,Liu Zhongli2,Yi Xiaoyang2ORCID

Affiliation:

1. State Key Laboratory of Advanced Forming Technology and Equipment China Academy of Machinery Science and Technology Beijing 100044 China

2. College of Nuclear Equipment and Nuclear Engineering Yantai University Yantai 264005 China

3. Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing Yantai 264005 China

Abstract

Shape memory alloys (SMAs) are kinds of smart materials that have superior properties such as shape memory effect and superelasticity, which have the most potential applications in various fields, especially in aerospace, naval, automobile and biomedicine industries, etc. Nevertheless, the inherent natures of shape memory alloys are characterized by the smaller transformation temperature intervals and transformation stress intervals, which make the devices have poor control ability. To achieve the accurate controllability for progressive movement, creating functionally graded shape memory alloys has been adopted. Herein, the classification, fabrications, microstructural features, and performances of functionally graded shape memory alloys are reviewed. For comparison, the creation of various gradients in shape memory alloys can widen the transformation temperature intervals and transformation stress intervals to some extent. In addition, the formation of the compositional, microstructural, or geometrical gradient also contributes to the generation of excellent performances such as the four‐way shape memory effect, higher strength, and larger temperature window for the stress‐assisted two‐way shape memory effect, etc. Such superior functions promote a wider application range of shape memory alloys.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3