Low‐Velocity Impact Response Analysis of Functionally Graded Piezoelectric Plates Using Finite‐Element Method and a Two‐Degrees‐of‐Freedom Spring‐Mass Model

Author:

Mehrdad Ehsan1ORCID,Feli Saeid2,Das Raj3

Affiliation:

1. Erik Jonsson School of Engineering and Computer Science The University of Texas at Dallas 800 W. Campbell Road Richardson TX 75080-302 USA

2. Department of Mechanical Engineering Faculty of Engineering Razi University Taghe-Bostan, Zakaria Razi Blvd. Kermanshah 6714414971 Iran

3. School of Engineering RMIT University 124 La Trobe St. Melbourne VIC 3000 Australia

Abstract

The study focuses on the low‐velocity impact response of functionally graded piezoelectric plates. The effective material properties are determined using the rule of mixture and power law model. The kinematics of the plates is modeled by the first‐order shear deformation theory, and coupled governing equations of the plates are formulated using Hamilton's principle and Maxwell's law. A set of time‐dependent equations, extracted by applying the finite‐element method, is solved by the fourth‐order Runge–Kutta method. A linearized form of Hertz's contact law and a two‐degrees‐of‐freedom spring‐mass system are incorporated to find the contact force under the impact event. Numerical results are verified by comparing with the available literature data. The impact response of the plates constituted of different volume fractions and slenderness ratios in both simply supported and clamped boundary conditions are evaluated under different impact conditions. Based on the results of the present study, it is found that the volume fraction of the piezoelectric components, impact condition, in‐plane dimensions, and the plate slenderness ratio play significant roles in the impact behavior of the plates. Eventually, it is found that the applied electric voltage is not a notable factor in determining the impact response of the plates.

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3