Magnetically Actuated Surface Microstructures for Efficient Transport and Tunable Separation of Droplets and Solids

Author:

Kravanja Gaia1ORCID,Kriegl Raphael2,Hribar Luka1,Glavan Gašper2,Drevenšek-Olenik Irena34,Shamonin Mikhail2,Jezeršek Matija1ORCID

Affiliation:

1. Faculty of Mechanical Engineering University of Ljubljana Aškerčeva 6 SI-1000 Ljubljana Slovenia

2. East Bavarian Centre for Intelligent Materials (EBACIM) Ostbayerische Technische Hochschule (OTH) Regensburg Seybothstr. 2 93053 Regensburg Germany

3. Faculty of Mathematics and Physics University of Ljubljana Jadranska 19 SI-1000 Ljubljana Slovenia

4. Department of Complex Matter Jozef Stefan Institute Jamova 39 SI-1000 Ljubljana Slovenia

Abstract

Efficient transportation of droplets (≈101–102 μL) and small solid objects (≈101–102 mm3) have important applications in many fields, such as microfluidics, lab‐on‐a‐chip devices, drug delivery, etc. A novel multifunctional surface consisting of a periodic array of micro‐lamellae from a soft magnetoactive elastomer on a plastic substrate is reported for these purposes. The physical origin of the propulsion is the bending of soft magnetic lamellae in nonuniform magnetic fields, which is also observed in uniform magnetic fields. The magnetoactive surface is fabricated using a facile and rapid method of laser ablation. The propulsion of items is realized using a four‐pole rotating magnet. This results in a cyclic lamellar fringe motion over the microstructured surface and brings an advantage of easy reciprocation of transport by rotation reversal. Two modes of object transportation are identified: “pushing” mode for precise control of droplet and solid positioning and “bouncing” mode for heavier solid objects transportation. A water droplet of 5 μL or a glass sphere with a 2.1 mm diameter can be moved at a maximum speed of 60 mm s−1. The multifunctionality of the proposed mechatronic platform is demonstrated on the examples of selective solid–liquid separation and droplet merging.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3