Affiliation:
1. School of Aeronautics Chongqing Jiaotong University Chongqing 400074 China
2. The Green Aerotechnics Research Institute of Chongqing Jiaotong University Chongqing 401120 China
3. Chongqing Key Laboratory of Green Aviation Energy and Power Chongqing 401130 China
4. College of Energy and Power Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
Abstract
Three types of layered‐hybrid lattice structures (LHLSs) with different layer thicknesses composed of body‐centered‐cubic (BCC) and face‐centered‐cubic (FCC) unit cells are designed and manufactured by selective laser melting using Ti–6Al–4V powder. The microstructure and surface morphologies of the three types of the selective laser melting‐formed LHLSs are examined by an optical microscope and scanning electron microscope (SEM), respectively. Quasistatic compression experiments are carried out to investigate the mechanical properties. The results show that the layer thickness has a significant effect on the mechanical properties and deformation behaviors. The elastic modulus, yield strength, and ultimate compressive strength of LHLS increase with the increasing BCC and FCC layer thickness, respectively. Based on the observations of deformation process, a 45° shear band and axial fracture are observed in LHLS‐8, and step‐like deformation bands are observed in both LHLS‐4 and LHLS‐2 samples. Besides, the influence of different loading directions on mechanical properties is also investigated; it is found that the ultimate compressive strength loaded in the transverse direction is independent of the layer thickness in LHLSs.
Funder
National Natural Science Foundation of China
Chongqing Municipal Education Commission
Subject
Condensed Matter Physics,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献