Mechanical Properties of Selective Laser Melting‐Processed Multihierarchical Lattice Structure Based on Body‐Centered‐Cubic Unit Cell

Author:

Nie Yu1,Ren Yi12ORCID,Gao Haoze1,Liu Zhuofan1,Ran Wei1,Lou Chao3,Chen Wei12

Affiliation:

1. School of Aeronautics Chongqing Jiaotong University Chongqing 400074 China

2. Chongqing Key Laboratory of Green Aviation Energy and Power Chongqing Jiaotong University Chongqing 400074 China

3. National & Local Joint Engineering Research Center of Transportation Civil Engineering Materials Chongqing Jiaotong University Chongqing 400074 China

Abstract

Herein, three types of multihierarchical lattice structures (MHLSs) with different configurations are designed based on the body‐centered‐cubic (BCC) unit cell. The designed lattice structures are fabricated using Ti‐6Al‐4 V powder as feedstock material through selective laser melting (SLM) technology. The microstructure and surface morphology of the SLM‐formed samples are observed by optical microscopy and scanning electron microscopy, respectively. Theoretical calculation and quasistatic compression experiment are carried out to investigate their mechanical properties. The result shows that the size error of slave cell with small strut diameters is greater than that of master cell with larger strut diameters. All MHLSs exhibit superior mechanical properties compared to the BCC lattice structure. Moreover, the specific elastic modulus and specific yield strength of MHLSs with the best mechanical properties are 70.1% and 51.0% higher than that of BCC lattice structure, respectively. Meanwhile, theoretical calculation results of the elastic modulus and yield strength are consistent with the results of quasi‐static compression testing. The fracture morphology analysis indicates that the struts of the MHLSs samples exhibit a mixed brittle–plastic fracture mode, while the nodes exhibit a plastic fracture mode.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing Municipality

Chongqing Municipal Education Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3