Manganese induces oxidative damage in the hippocampus by regulating the expression of oxidative stress‐related genes via modulation of H3K18 acetylation

Author:

Chen Zhi1,Ao Chunyan1,Liu Yan1,Yang Yue2,Liu Ying1,Ming Qian1,Li Changzhe1,Zhao Hua1,Ban Jiaqi1,Li Jun1ORCID

Affiliation:

1. School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Guizhou Medical University Guiyang Guizhou China

2. Guiyang Stomatological Hospital Guiyang Guizhou China

Abstract

AbstractProlonged exposure to manganese (Mn) contributes to hippocampal Mn accumulation, which leads to neurodegenerative diseases called manganese poisoning. However, the underlying molecular mechanisms remain unclear and there are no ideal biomarkers. Oxidative stress is the essential mechanisms of Mn‐related neurotoxicity. Furthermore, histone acetylation has been identified as being engaged in the onset and development of neurodegenerative diseases. Therefore, the work aims to understand the molecular mechanisms of oxidative damage in the hippocampus due to Mn exposure from the aspect of histone acetylation modification and to assess whether H3K18 acetylation (H3K18ac) modification level in peripheral blood reflect Mn‐induced oxidative damage in the hippocampus. Here, we randomly divided 60 male rats into four groups and injected them intraperitoneally with sterile pure water and MnCl2⋅4H2O (5, 10, and 15 mg/kg) for 16 weeks, 5 days a week, once a day. The data confirmed that Mn exposure down‐regulated superoxide dismutase activity and glutathione level as well as up‐regulated malondialdehyde level in the hippocampus and plasma, and that there was a positive correlation between these indicators in the hippocampus and plasma. Besides, we noted that Mn treatment upregulated H3K18ac modification levels in the hippocampus and peripheral blood and that H3K18ac modification levels correlated with oxidative stress. Further studies demonstrated that Mn treatment decreased the amounts of H3K18ac enrichment in the manganese superoxide dismutase (SOD2) and glutathione transferase omega 1 (GSTO1) gene promoter regions, contributing to oxidative damage in the hippocampus. In short, our results demonstrate that Mn induces oxidative damage in the hippocampus by inhibiting the expression of SOD2 and GSTO1 genes via modulation of H3K18ac. In assessing Mn‐induced hippocampal neurotoxicity, oxidative damage in plasma may reflect hippocampal oxidative damage in Mn‐exposed groups.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3