Step by step progress to achieve an icephobic silicone‐epoxy hybrid coating: Tailoring matrix composition and additives

Author:

Adja Akré Anne Simone1ORCID,Sobhani Sarah1ORCID,Momen Gelareh1ORCID,Fofana Issouf1ORCID,Carrière Julie2

Affiliation:

1. Department of Applied Sciences International Research Center on Atmospheric Icing and Power Network Engineering (CenGivre) Chicoutimi Quebec Canada

2. Centre for Industrial Port Expertise Northern Institute for Research in Environment and Occupational Health and Safety (INREST) Sept‐Iles Quebec Canada

Abstract

AbstractThis study details the fabrication of an icephobic coating for steel produced using a silicone–epoxy hybrid resin; the coating has good mechanical properties and weathering resistance for outdoor applications. Silicone–epoxy hybrid resins and amino‐functional silane‐curing agents were selected for investigation and applied to steel samples. Wettability, ice adhesion strength, and the mechanical and weathering resistance properties of the developed coatings were assessed using a drop‐shape analyzer, Fourier transform infrared, X‐ray photoelectron spectroscopy, as well as push‐off, tensile, and QUV tests. The possible correlation between ice adhesion strength and Young modulus was also investigated. The best‐performing matrix in terms of mechanical properties and weathering resistance had its surface energy characteristics altered—via two fluorinated silicone additives at various concentrations—to lower ice adhesion strength. For the steel substrates, the optimized additive‐altered surface showed a lower ice adhesion strength (decreasing from 362 to 94 kPa) with an adhesion reduction factor of 10.6. The fabricated coatings can serve as a protective layer for marine harbor infrastructures.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3