IncidencePrevalence: An R package to calculate population‐level incidence rates and prevalence using the OMOP common data model

Author:

Raventós Berta12ORCID,Català Martí3ORCID,Du Mike3ORCID,Guo Yuchen3ORCID,Black Adam4ORCID,Inberg Ger5ORCID,Li Xintong3ORCID,López‐Güell Kim3ORCID,Newby Danielle3ORCID,de Ridder Maria5ORCID,Barboza Cesar5ORCID,Duarte‐Salles Talita15ORCID,Verhamme Katia5ORCID,Rijnbeek Peter5ORCID,Prieto Alhambra Daniel35ORCID,Burn Edward3ORCID

Affiliation:

1. Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol) Barcelona Spain

2. Universitat Autònoma de Barcelona Bellaterra (Cerdanyola del Vallès) Barcelona Spain

3. Centre for Statistics in Medicine (CSM), Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences (NDROMS), University of Oxford Oxford UK

4. Odysseus Data Services Cambridge Massachusetts USA

5. Department of Medical Informatics Erasmus University Medical Center Rotterdam The Netherlands

Abstract

AbstractPurposeReal‐world data (RWD) offers a valuable resource for generating population‐level disease epidemiology metrics. We aimed to develop a well‐tested and user‐friendly R package to compute incidence rates and prevalence in data mapped to the observational medical outcomes partnership (OMOP) common data model (CDM).Materials and MethodsWe created IncidencePrevalence, an R package to support the analysis of population‐level incidence rates and point‐ and period‐prevalence in OMOP‐formatted data. On top of unit testing, we assessed the face validity of the package. To do so, we calculated incidence rates of COVID‐19 using RWD from Spain (SIDIAP) and the United Kingdom (CPRD Aurum), and replicated two previously published studies using data from the Netherlands (IPCI) and the United Kingdom (CPRD Gold). We compared the obtained results to those previously published, and measured execution times by running a benchmark analysis across databases.ResultsIncidencePrevalence achieved high agreement to previously published data in CPRD Gold and IPCI, and showed good performance across databases. For COVID‐19, incidence calculated by the package was similar to public data after the first‐wave of the pandemic.ConclusionFor data mapped to the OMOP CDM, the IncidencePrevalence R package can support descriptive epidemiological research. It enables reliable estimation of incidence and prevalence from large real‐world data sets. It represents a simple, but extendable, analytical framework to generate estimates in a reproducible and timely manner.

Funder

European Medicines Agency

Publisher

Wiley

Subject

Pharmacology (medical),Epidemiology

Reference38 articles.

1. Measuring prevalence and incidence of chronic conditions in claims and electronic health record databases

2. Revisiting the washout period in the incident user study design: why 6–12 months may not be sufficient

3. Validation of a common data model for active safety surveillance research

4. WickhamH DanenbergP CsárdiG et al.roxygen2: In‐Line Documentation for R (version 7.2.3).2022https://CRAN.R-project.org/package=roxygen2

5. LangM BischlB TóthD.checkmate: Fast and Versatile Argument Check; (version 2.1.0).2022https://CRAN.R-project.org/package=checkmate

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3