Enhanced reversal of ABCG2‐mediated drug resistance by replacing a phenyl ring in baicalein with a meta‐carborane

Author:

Kuhnert Lydia1ORCID,Kuhnert Robert2,Sárosi Menyhárt B.34,Lakoma Cathleen1,Scholz Birte K.1,Lönnecke Peter2,Hey‐Hawkins Evamarie2ORCID,Honscha Walther1

Affiliation:

1. Faculty of Veterinary Medicine, Institute of Pharmacology, Pharmacy and Toxicology Universität Leipzig Germany

2. Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry Universität Leipzig Germany

3. Center for Nanosystems Chemistry (CNC) Universität Würzburg Germany

4. Institut für Organische Chemie Universität Würzburg Germany

Abstract

Success of chemotherapy is often hampered by multidrug resistance. One mechanism for drug resistance is the elimination of anticancer drugs through drug transporters, such as breast cancer resistance protein (BCRP; also known as ABCG2), and causes a poor 5‐year survival rate of human patients. Co‐treatment of chemotherapeutics and natural compounds, such as baicalein, is used to prevent chemotherapeutic resistance but is limited by rapid metabolism. Boron‐based clusters as meta‐carborane are very promising phenyl mimetics to increase target affinity; we therefore investigated the replacement of a phenyl ring in baicalein by a meta‐carborane to improve its affinity towards the human ABCG2 efflux transporter. Baicalein strongly inhibited the ABCG2‐mediated efflux and caused a fivefold increase in mitoxantrone cytotoxicity. Whereas the baicalein derivative 5,6,7‐trimethoxyflavone inhibited ABCG2 efflux activity in a concentration of 5 μm without reversing mitoxantrone resistance, its carborane analogue 5,6,7‐trimethoxyborcalein significantly enhanced the inhibitory effects in nanomolar ranges (0.1 μm) and caused a stronger increase in mitoxantrone toxicity reaching similar values as Ko143, a potent ABCG2 inhibitor. Overall, in silico docking and in vitro studies demonstrated that the modification of baicalein with meta‐carborane and three methoxy substituents leads to an enhanced reversal of ABCG2‐mediated drug resistance. Thus, this seems to be a promising basis for the development of efficient ABCG2 inhibitors.

Funder

Deutsche Forschungsgemeinschaft

European Social Fund

Publisher

Wiley

Subject

Cancer Research,Genetics,Molecular Medicine,General Medicine,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3