Carboranes as Potent Phenyl Mimetics: A Comparative Study on the Reversal of ABCG2‐Mediated Drug Resistance by Carboranylquinazolines and Their Organic Isosteres

Author:

Stockmann Philipp1ORCID,Kuhnert Lydia2ORCID,Krajnović Tamara3ORCID,Mijatović Sanja3ORCID,Maksimović‐Ivanić Danijela3ORCID,Honscha Walther2ORCID,Hey‐Hawkins Evamarie1ORCID

Affiliation:

1. Faculty of Chemistry and Mineralogy Leipzig University Johannisallee 29 04103 Leipzig Germany

2. Faculty of Veterinary Medicine Leipzig University An den Tierkliniken 15 04103 Leipzig Germany

3. Institute for Biological Research “Sinisa Stankovic” University of Belgrade Bul. despota Stefana 142 11108 Belgrade Serbia

Abstract

AbstractMultidrug resistance is a major challenge in clinical cancer therapy. In particular, overexpression of certain ATP‐binding cassette (ABC) transporter proteins, like the efflux transporter ABCG2, also known as breast cancer resistance protein (BCRP), has been associated with the development of resistance to applied chemotherapeutic agents in cancer therapies, and therefore targeted inhibition of BCRP‐mediated transport might lead to reversal of this (multidrug) resistance (MDR). In a previous study, we have described the introduction of a boron‐carbon cluster, namely closo‐dicarbadodecaborane or carborane, as an inorganic pharmacophore into a polymethoxylated 2‐phenylquinazolin‐4‐amine backbone. In this work, the scope was extended to the corresponding amide derivatives. As most of the amide derivatives suffered from poor solubility, only the amide derivative QCe and the two amine derivatives DMQCc and DMQCd were further investigated. Carboranes are often considered as sterically demanding phenyl mimetics or isosteres. Therefore, the organic phenyl and sterically demanding adamantyl analogues of the most promising carborane derivatives were also investigated. The studies showed that the previously described DMQCd, a penta‐methoxylated N‐carboranyl‐2‐phenylquinazolin‐4‐amine, was by far superior to its organic analogues in terms of cytotoxicity, inhibition of the human ABCG2 transporter, as well as the ability to reverse BCRP‐mediated mitoxantrone resistance in MDCKII‐hABCG2 and HT29 colon cancer cells. Our results indicate that DMQCd is a promising candidate for further in vitro as well as in vivo studies in combination therapy for ABCG2‐overexpressing cancers.

Publisher

Wiley

Subject

Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Molecular Medicine,Drug Discovery,Biochemistry,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3