Affiliation:
1. Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
2. Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, People's Republic of China
Abstract
Abstract
Müller glia (MG), cells that maintain homeostasis in the retina, are dormant stem cells that can regenerate neurons upon injury. However, the regenerative property of MG, which is reproducibly displayed in the lower vertebrates, is not readily observed in the mammals even upon forced expression of regulatory genes or exposure to growth factors. Here, we demonstrate a reproducible unmasking of the neurogenic properties of enriched rodent MG by serial exposure to different combinations of small molecules. The enriched MG, in response to changing culture conditions, silenced glia-specific genes and acquired transcriptional signature of neurons, accompanied by upregulation of genes known to regulate neuronal potential of MG. The MG-derived neurons expressed immunoreactivities corresponding to neuronal proteins and displayed electrophysiological features of immature neurons. Our study presents a proof of principle of pharmacological activation of neurogenic properties of mammalian MG, which may be utilized for therapeutic regeneration.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献