Gene regulatory networks controlling vertebrate retinal regeneration

Author:

Hoang Thanh1ORCID,Wang Jie2ORCID,Boyd Patrick345ORCID,Wang Fang2ORCID,Santiago Clayton1ORCID,Jiang Lizhi1,Yoo Sooyeon1ORCID,Lahne Manuela345ORCID,Todd Levi J.6ORCID,Jia Meng345ORCID,Saez Cristian1ORCID,Keuthan Casey7ORCID,Palazzo Isabella6ORCID,Squires Natalie6ORCID,Campbell Warren A.6ORCID,Rajaii Fatemeh2ORCID,Parayil Trisha1ORCID,Trinh Vickie1ORCID,Kim Dong Won1,Wang Guohua2ORCID,Campbell Leah J.345ORCID,Ash John7ORCID,Fischer Andy J.6ORCID,Hyde David R.345ORCID,Qian Jiang2ORCID,Blackshaw Seth128910ORCID

Affiliation:

1. Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

2. Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

3. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.

4. Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556, USA.

5. Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.

6. Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.

7. Department of Ophthalmology, University of Florida School of Medicine, Gainesville, FL 32610, USA.

8. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

9. Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

10. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Abstract

Unlocking retinal regeneration in mice Zebrafish can regenerate damaged retinal tissue, but mice cannot. Hoang et al. found that tracking changes in gene expression and chromatin accessibility upon injury revealed clues as to why retinal glial cells in zebrafish could generate new neurons but the same cell type in mice could not. In zebrafish, activated Müller glial cells shift into a proliferative phase, whereas in mice, a genetic network returns the glial cells to quiescence. A few transcription factors enforce quiescence in the mouse, and disruption of these allowed Müller glia to proliferate and generate new neurons after retinal injury. Science , this issue p. eabb8598

Funder

National Eye Institute

Research to Prevent Blindness

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3