Two‐Dimensional Layered Hydroxide Materials for Nucleophile Oxidation

Author:

Yang Yuwei12,Bedford Nicholas M.123ORCID

Affiliation:

1. School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia

2. Australian Research Council Centre of Excellence in Carbon Science and Innovation University of New South Wales Sydney NSW 2052 Australia

3. Department of Chemistry Colorado School of Mines Golden CO 80401 USA

Abstract

AbstractThe global energy crisis highlights the need to transition from fossil fuels to sustainable, renewable sources of energy. Green hydrogen produced via renewable energy‐driven water electrolysis is an emerging alternative due to its zero emissions and high energy density. To address the high energy consumption of water electrolysis, innovative hybrid electrolyzers integrating nucleophile oxidation reactions (NOR) are under activity investigation, reducing energy demands and enabling valuable product synthesis and waste treatment, thereby enhancing the efficiency and economic viability of hydrogen production via electrocatalytic technologies. Recent advancements in layered hydroxide materials (LHMs) have markedly improved the efficiency of alkaline electrochemical conversion processes and are gaining prominence in NORs due to their expansive surface areas and tailorable characteristics through diverse engineering strategies. Further, their layered architecture is readily conducive to in‐situ characterization, using techniques like XAS, XRD, Raman, and IR spectroscopy, providing insights into their anodic NOR mechanisms. This review summarizes the latest developments in LHMs as electrocatalysts for NOR, discusses current design strategies of LHMs, and emphasizes the significance of operando characterization techniques in elucidating the reaction mechanisms of different LHMs. Finally, the future challenges and potential advancements in their scale‐up application in electrocatalytic NOR are put forward.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3