Robustness analysis of uncertain time‐varying systems with unknown initial conditions

Author:

Farhood Mazen1ORCID

Affiliation:

1. Kevin T. Crofton Department of Aerospace and Ocean Engineering Virginia Tech Blacksburg Virginia USA

Abstract

SummaryThis paper focuses on the robustness analysis of discrete‐time, linear time‐varying (LTV) systems subject to various uncertainties, such as static and dynamic, time‐invariant and time‐varying, linear perturbations, and unknown initial conditions. The proposed approach is based on integral quadratic constraint theory and allows for a potentially more accurate characterization of the set in which the initial state resides by imposing separate constraints on the initial values of the state variables as opposed to simply requiring the initial state to lie in some ellipsoid. The adopted problem formulation facilitates the analysis of uncertain LTV systems subject to disturbance inputs that are bounded pointwise in time, and the developed results enable determining useful pointwise bounds on the performance outputs given such inputs. The main analysis result is given for eventually periodic nominal systems, which include linear time‐invariant, finite horizon, and periodic systems as special cases. The analysis conditions are expressed as linear matrix inequalities. Two additional results stemming from the main analysis theorem are provided that can be used to determine overapproximated ellipsoidal reachable sets. Finally, the utility of the proposed approach is demonstrated in an illustrative example.

Funder

Office of Naval Research

NSF

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Mechanical Engineering,Aerospace Engineering,Biomedical Engineering,General Chemical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control of Polytopic LPV Systems with Uncertain Initial Conditions;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3