Noncovalent interactions on the electrocatalytic oxidation of ethanol on a Pt/C electrocatalyst

Author:

Han Chenjie12ORCID,Lyu Yeqing12,Wang Shaona12,Liu Biao12,Zhang Yi12,Lu Jun3,Du Hao123

Affiliation:

1. National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering Chinese Academy of Sciences Beijing China

2. School of Chemical Engineering University of Chinese Academy of Sciences Beijing China

3. College of Chemical and Biological Engineering Zhejiang University Hangzhou China

Abstract

AbstractDue to their environmentally friendly nature and high energy density, direct ethanol fuel cells have attracted extensive research attention in recent decades. However, the actual Faraday efficiency of the ethanol oxidation reaction (EOR) is much lower than its theoretical value and the reaction kinetics of the EOR is sluggish due to insufficient active sites on the electrocatalyst surface. Pt/C is recognized as one of the most promising electrocatalysts for the EOR. Thus, the microscopic interfacial reaction mechanisms of the EOR on Pt/C were systematically studied in this work. In metal hydroxide solutions, hydrated alkali cations were found to bind with OHad through noncovalent interactions to form clusters and occupy the active sites on the Pt/C electrocatalyst surface, thus resulting in low Faraday efficiency and sluggish kinetics of the EOR. To reduce the negative effect of the noncovalent interactions on the EOR, a shield was made on the electrocatalyst surface using 4‐trifluoromethylphenyl, resulting in twice the EOR catalytic reactivity of Pt/C.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3