Long‐cycling Zinc Metal Anodes Enabled by an In Situ Constructed ZnO Coating Layer

Author:

Ren Qingqing1,Tang Xinyue1,He Kun1ORCID,Zhang Congmin2,Wang Wei1,Guo Yaqing1,Zhu Zixuan3,Xiao Xiaofen1,Wang Shun1,Lu Jun45ORCID,Yuan Yifei1ORCID

Affiliation:

1. College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

2. Shenyang Aircraft Corporation Shenyang 110000 China

3. Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China

4. College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China

5. Quzhou Institute of Power Battery and Grid Energy Storage Quzhou Zhejiang 324000 China

Abstract

AbstractSuppressing dendrite growth in zinc (Zn) anodes for aqueous Zn batteries remains a significant challenge. Modifying the Zn/electrolyte interface stands out as one of the most promising strategies to tackle this problem. In this study, a nanometer‐thick ZnO coating layer with a uniform concave surface geometry is in situ constructed to modify the Zn anode for the first time. The chemical bond formed between the ZnO layer and the Zn foil enhances the structural stability of the synthesized ZnO modified‐Zn anode. Finite element simulations indicate that the ZnO coating layer facilitates uniform electric field distribution and zinc flux on the Zn electrode. In situ optical observations unveil how the modification interface regulates zinc plating behaviors on the Zn anode. Impressively, the symmetrical ZnO‐Zn cell displays a remarkable cycling stability of 1765 h at a current density of 5 mA cm−2 with an areal capacity of 1 mAh cm−2. Even when subjected to a very high current density of 50 mA cm−2, it maintains stable operation over 3800 cycles. This success highlights the immense application potential of the rationally tailored ZnO‐Zn anode.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3