Effect of Synthetic Methodology on the Physicochemical Attributes and Electrocatalytic Activity of NiAl‐LDHs for the Oxygen Evolution Reaction

Author:

Hanif Aamir1,Khan M. Yusuf1,Ehsan M. Ali1,Helal Aasif1,Abdul Aziz M.1,Khan Abuzar1ORCID

Affiliation:

1. Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Box 5040 Dhahran 31261 Saudi Arabia

Abstract

AbstractLayered double hydroxides (LDHs) are promising materials for oxygen evolution reactions (OERs), a key component of water splitting to produce hydrogen and oxygen via water electrolysis. However, the performance of LDHs can be limited by their low surface area and poor accessibility of active sites. In this work, we synthesized highly exfoliated 2D NiAl‐LDHs by aqueous miscible solvent treatment method (AMOST) and compared its electrocatalytic efficiency with its analogue synthesised via slow urea hydrolysis. We demonstrate that the exfoliated 2D LDHs prepared by AMOST method have a higher surface area and more active sites than the crystalline LDHs obtained through urea hydrolysis, resulting in a superior OER activity and efficiency. The exfoliated 2D LDHs required a lower overpotential of 280 mV to reach a current density of 50 mA cm−2 and it also outperformed IrO2, a benchmark OER catalyst, in terms of overpotential and stability. We demonstrate that the physicochemical properties of nanosheets derived from NIAl‐LDH‐based materials are strongly influenced by the synthetic methodology, which affects the exfoliation degree, surface area and active site density. These factors are crucial for improving the OER catalytic performance of these materials, as shown by our results.

Publisher

Wiley

Subject

General Chemistry,Biochemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3