Finite‐time command filter‐based adaptive tracking control for nonstrict feedback nonlinear systems with full‐state restrictions and unmodeled dynamics

Author:

Zhu Xinfeng1ORCID,Huang Jun1,Ding Wenwu1,Zhang Tianping1

Affiliation:

1. College of Information Engineering Yangzhou University Yangzhou China

Abstract

AbstractThe finite‐time command filter tracking control for a class of nonstrictly feedback nonlinear systems with unmodeled dynamics and full‐state constraints is investigated in this paper. The hyperbolic tangent function is used as a nonlinear mapping technique to solve the obstacle of the full‐state constraints. A new adaptive finite time control method is proposed through command filtering reverse engineering, and the shortcomings of the dynamic surface control (DSC) method are overcome by the error compensation mechanism. Dynamic signal is designed to handle dynamical uncertain terms. Normalization signal is designed to handle input unmodeled dynamics. Unknown nonlinear functions are approximated by radial basis function neural networks. Based on the Lyapunov stability theory, it is proved that all signals in the closed‐loop system are semi‐globally consistent and finally bounded and the output tracking error converges in finite time. Two numerical examples are utilized to verify the effectiveness of the proposed control approach.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3