Adaptive neural practical fixed‐time command filtered control for multi‐input and multi‐output nonlinear systems with dead zones input and unknown control direction

Author:

Kang Shijia1ORCID,Xiaoping Liu Peter2ORCID,Wang Huanqing3ORCID

Affiliation:

1. School of Mechanical, Electronic and Control Engineering Beijing Jiaotong University Beijing China

2. Department of Systems and Computer Engineering Carleton University Ottawa Canada

3. College of Mathematical Sciences Bohai University Jinzhou China

Abstract

AbstractIn this article, under the circumstance of dead zones input and unknown control direction, the adaptive practical fixed‐time control strategy is presented for a general class of multi‐input and multi‐output (MIMO) nonlinear systems. The inherent explosion of computational complexity difficulty is eliminated by adopting a command filter technique and the universal approximation properties of radial basis function neural networks (RBFNNs) are applied to model the unknown nonlinear functions. The difficulties of the dynamic surface method and unknown directions can be handled by invoking error compensation mechanism and Nussbaum‐type functions, respectively. The uniqueness of the presented control scheme is that the tracking system can achieve the fixed‐time stability without relying on the boundedness of dead‐zone parameters. The fixed‐time convergence of the output tracking error and the semiglobally fixed‐time stable of closed‐loop system are assured via the developed adaptive fixed‐time command filtered controller. Finally, a practical example is supplied to further validate the availability of the presented theoretic result.

Funder

Natural Science Foundation of Yangzhou Municipality

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3