Finite element analysis with deformed shape constraints generated by laser‐scanned point clouds

Author:

Haraki Hibiya1,Yusa Yasunori1ORCID,Masuda Hiroshi1ORCID

Affiliation:

1. Department of Mechanical and Intelligent Systems Engineering, Graduate School of Informatics and Engineering The University of Electro‐Communications Tokyo Japan

Abstract

AbstractThis article proposes a computational method for finite element analysis with deformed shape constraints for analyzing constructed structures to account for deformations that occur before shape measurement by a terrestrial laser scanner (TLS). In this method, point clouds obtained by a TLS are considered as a partial surface of the deformed structure. An analysis model is assumed to be created from CAD data or drawings. The analysis is performed under deformed shape constraints, namely, the deformed surface constraints or the normal vector constraints, which are generated by the point clouds. These constraints are introduced to reproduce the current displacements and stresses for the structure through the analysis. This method was applied to analyses of a plate and a desk using point clouds, which were created virtually on a computer or obtained by a TLS in the numerical examples. The results showed that this method can consider unexpected deformations that occur before laser scanning. Although the computed stresses oscillated when the scanned point cloud was used due to measurement errors and conventional point cloud processing methods, the stress values were responsive enough to indicate unnatural shapes of the deformed structure. Moreover, the oscillation was observed only in areas with constraints, whereas it was not seen in areas without constraints.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3