Abstract
This article presented a physics-based structural health monitoring (SHM) approach applied to a pretensioned adjacent concrete box beams bridge in order to predict the deformations associated with the presence of transient loads. A detailed finite element model was generated using ANSYS software to create an accurate model of the bridge. The presence of concentrated loads on the deck at different locations was simulated, and a static analysis was performed to quantify the deformations induced by the loads. Such deformations were then compared to the strains recorded by an array of wireless strain gauges during a controlled truckload test performed by an independent third party. The test consisted of twenty low-speed crossings at controlled distances from the bridge parapets using a truck with a certified load. The array was part of a SHM system that consisted of 30 wireless strain gauges. The results of the comparative analysis showed that the proposed physics-based monitoring is capable of identifying sensor-related faults and of determining the load distributions across the box beams. In addition, the data relative to near two-years monitoring were presented and showed the reliability of the SHM system as well as the challenges associated with environmental effects on the strain reading. An ongoing study is determining the ability of the proposed physics-based monitoring at estimating the variation of strain under simulated damage scenarios.
Funder
Pennsylvania Department of Transportation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献