Limited population and community effects of hatching asynchrony in a pond‐breeding salamander

Author:

Anderson Thomas L.1ORCID,Burkhart Jacob J.1ORCID,Cianci‐Gaskill Jacob A.2ORCID,Davenport Jon M.1ORCID

Affiliation:

1. Department of Biology Appalachian State University Boone North Carolina USA

2. School of Natural Resources University of Missouri Columbia Missouri USA

Abstract

AbstractUnderstanding attributes of phenology beyond the mean date of a life history event, such as variability among individuals within a population, is critical to predict how climate‐induced phenological shifts may alter population dynamics. Identifying how phenological variability impacts organisms is especially needed to better understand how phenological shifts affect trophic dynamics (e.g., shifts in variability of top predators affecting primary production). To better understand the effects of phenological variability on both populations and communities, we examined how variation in egg hatching synchrony of predatory marbled salamanders (Ambystoma opacum) impacted intraspecific interactions at the larval stage, ultimately affecting demographic traits and survival through metamorphosis. We also examined how hatching synchrony affected overall trophic dynamics (e.g., primary consumers and producers) in pond food webs. We experimentally manipulated the degree of hatching synchrony of embryonicA. opacumand subsequently reared larvae in outdoor mesocosms. We monitored demographic traits such as larval growth, size at and time to metamorphosis, and survival. To assess trophic dynamics, we monitored zooplankton abundance and phytoplankton biomass during the experiment. Larvae exhibited greater variability in body size in medium and low hatching synchrony treatments compared to high synchrony treatments. Larval body size variation diminished over time to ultimately result in no differences in most life history traits at metamorphosis or survival among hatching synchrony treatments. We also found no differences among treatments in zooplankton abundance or phytoplankton biomass, likely because of minimal variation inA. opacumsurvival among treatments that would induce top‐down changes. Overall, we found that phenological variation may be context dependent in its influence on demography and overall community structure. Because of concerns for how phenological shifts will affect species interactions, greater scrutiny into conditions that would promote changes in population and community dynamics is needed.

Funder

U.S. Department of Defense

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3